

Universidade Federal de Campina Grande – UFCG Unidade Acadêmica de Física Programa de Pós-Graduação em Física

Candidato (a):	
RG:	, DATA: 15 / 06/ 2016

PROVA SELEÇÃO DE MESTRADO 2016-2

<u>Instruções</u>

Esta prova constitui a primeira parte do processo seletivo de ingresso do PPGF. Ela contém problemas de Álgebra Linear, Mecânica Quântica, eletromagnetismo, etc. Todas as questões possuem o mesmo peso de um total de 100%.

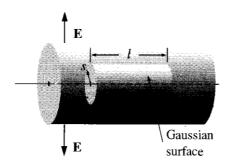
- O tempo de duração desta prova é de 04 horas. O tempo mínimo de permanência em sala é de 50 minutos.
- Não é permitido o uso de calculadoras ou quaisquer instrumentos eletrônicos.
- Resolva cada questão nas folhas em anexo sem destacá-las. Não se esqueça de escrever a numeração de cada questão (Q1, Q2,...).

Bloco de Questões

Q1- Números Complexos:

- a) Determine $a \in \mathbb{R}$ para que $\frac{2+i a}{1-i}$ seja um imaginário puro;
- b) Determine o argumento do número complexo $\frac{-i}{2+i}$?
- c) Calcule $(1-i)^{10}$
- Q2- Partindo da equação de Schrödinger obtenha a equação da continuidade

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{j} = 0,$$


onde $\rho = \psi^* \psi$ é a densidade de probabilidade e $\vec{j} = \frac{\hbar}{2mi} (\psi^* \vec{\nabla} \psi - \psi \vec{\nabla} \psi^*)$ é a corrente de probabilidade.

- Q3- Seja o estado $\Psi(x) = Ae^{(ikx-x^2)}[1+e^{-i\alpha}]$, onde $\alpha \in \mathbb{R}$.
- a) Encontre a constante de normalização A;
- b) Calcule a corrente de probabilidade $\vec{j}(x)$;
- c) Calcule os valores esperados dos operadores $x e x^2$.

Q4- Determine os autovalores e os autovetores associados ao operador:

$$A = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{array} \right]$$

Q5- Um longo cilindro com densidade de carga $\rho=ks$, onde k é uma constante. Encontre o campo elétrico dentro do cilindro.

